<form id="z1xf5"><th id="z1xf5"><progress id="z1xf5"></progress></th></form>
    <noframes id="z1xf5"><form id="z1xf5"></form><address id="z1xf5"></address>
    <form id="z1xf5"></form>
    <noframes id="z1xf5">

    <noframes id="z1xf5">

      <address id="z1xf5"></address>

      <address id="z1xf5"></address>



      Further on Equilibria and Attractors of 3D Chaotic Systems


      Guanrong (Ron) Chen

      City University of Hong Kong


      In a typical 3D autonomous chaotic system, such as the Lorenz or the Rossler system, the number of equilibria is three or two. Today, we are able to find or construct a relatively simple 3D autonomous chaotic system that can have any desired number of equilibria, including simple systems without equilibrium or with infinitely many. Furthermore, we are able to find or construct a relatively simple 3D autonomous or non-autonomous system that can have infinitely many chaotic attractors. This talk will introduce the main ideas and methodologies. Since these are non-hyperbolic systems, their theoretical analyses pose great challenges for future research studies.




      陈关荣教授1981年获广州中山大学计算数学硕士学位,1987年获美国Texas A&M 大学应用数学博士学位,其后在美国RiceHouston大学任教,自2000年起,接受香港城市大学讲座教授职位工作至今。陈关荣教授于1997年被选为IEEE Fellow,现为Life Fellow,分别于2008、20122016年获国家自然科学二等奖,2011年获俄罗斯圣彼得堡国立大学授予荣誉博士学位和俄罗斯欧拉基金会颁发欧拉金质奖章,2014年获法国诺曼底大学授予荣誉博士学位并当选为欧洲科学院院士,2015年当选为发展中国家科学院院士。